You are browsing content specific to your location, some treatments may not be available:

IVF laboratory

Blastocyst mitochondrial DNA (mtDNA) is not affected by oocyte vitrification: a sibling oocyte study.

Accepted: April 23, 2020


To evaluate whether mtDNA content at the blastocyst stage differs between embryos derived from fresh or vitrified sibling oocytes.

Material and methods A retrospective analysis was performed between March 2017 and September 2018, including 504 blastocysts from 94 couples undergoing preimplantation genetic testing for aneuploidies (PGT-A), using fresh oocytes together with previously vitrified oocytes. Trophectoderm biopsies were performed and subjected to next generation sequencing.

On average, 1.8 ± 1.0 oocyte vitrification cycles were performed per patient. Between fresh and vitrified cycles, no difference was observed between the number of fertilized oocytes (5.3 ± 4.2 versus 5.5 ± 3.0). Blastulation rate on day 5 per fertilized oocyte was significantly higher in the fresh group (62% ± 29% versus 44% ± 31%; p < 0.001). For the 504 biopsied blastocysts, 294 fresh versus 210 vitrified, no significant differences were found in the euploid rate, 40.5% versus 38.6% (p = 0.667), and mtDNA content, 30.1 (± 10.6) versus 30.0 (± 12.5) (p = 0.871), respectively. Regardless of the origin of the oocytes, aneuploid blastocysts contained significantly higher mtDNA values compared with the euploid ones (31.4 versus 28.0; p = 0.001). Furthermore, top-quality blastocysts had a significantly lower mtDNA content compared with moderate and poor-quality blastocysts (p < 0.001) and blastocysts biopsied on day 5 showed significantly lower mtDNA content compared with day 6 or day 7 blastocysts (p < 0.001). However, when analyzing the blastocyst mtDNA content according to the ploidy state, no differences were found for blastocyst quality or day of biopsy between blastocysts originating from fresh or vitrified oocytes.

Oocyte vitrification does not affect the mtDNA content of trophectoderm biopsies.

To read full publication download below

Sample PDF | 2.96 KB